Affiliation:
1. Weisberg Department of Mechanical Engineering, Marshall University, Huntington, WV, USA
Abstract
The importance of the vibration and dynamics of electric vehicle drivetrains has increased because of noise and durability concerns. In this study, the important dynamic responses of drivetrains, including the dynamic mesh force acting at the gear teeth, dynamic loads acting at the bearings, and torsional fluctuation of the tire or load under major vibration excitations, such as motor torque fluctuation excitation and spiral bevel gear mesh excitation, were investigated. The results demonstrate that at a lower motor speed, dynamic responses such as the dynamic mesh force, dynamic bearing loads, and dynamic torsional displacement of the tire or load under motor torque fluctuation are dominant. At a higher motor speed, however, the dynamic responses under the gear mesh excitation are dominant. In addition, increasing the pinion-motor torsional compliance is an effective approach for suppressing the dynamic responses of drivetrains under motor torque fluctuation.
Subject
Mechanical Engineering,Geophysics,Mechanics of Materials,Acoustics and Ultrasonics,Building and Construction,Civil and Structural Engineering
Cited by
8 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献