Research developments in adaptive intelligent vibration control of smart civil structures

Author:

Saeed Muhammad Usman1,Sun Zuoyu1,Elias Said2ORCID

Affiliation:

1. School of Civil Engineering, Guangzhou University, Guangzhou, China

2. Earthquake Engineering Research Centre, University of Iceland, Reykjavik, Iceland

Abstract

Control algorithms are the most critical aspects in the successful control of civil structures subjected to earthquake and wind forces. In recent years, adaptive intelligent control algorithms are emerging as an acceptable substitute method to conventional model-based control algorithms. These algorithms mainly work on the principles of artificial intelligence (AI) and soft computing (SC) methods that make them highly efficient in controlling highly nonlinear, time-varying, and time-delayed complex civil structures. The current research probes to control algorithms, that this article set forth an inclusive state-of-the-art review of adaptive intelligent control (AIC) algorithms for vibration control of smart civil structures. First, a general introduction to adaptive intelligent control is presented along with its advantages over conventional control algorithms. Second, their classification concerning artificial intelligence and soft computing methods is provided that mainly consists of artificial neural network-based controller, brain emotional learning-based intelligent controller, replicator dynamics-based controller, multi-agent system-based controller, support vector machine-based controller, fuzzy logic control, adaptive neuro-fuzzy inference system-based controller, adaptive filters-base controller, and meta-heuristic algorithms-based hybrid controllers. Third, a brief review of these algorithms with their developments on the theory and applications is provided. Fourth, we demonstrate a summarized overview of the cited literature with a brief trend analysis is presented. Finally, this study presents an overview of these innovative AIC methods that can demonstrate future directions. The contribution of this article is the anticipation of detailed and in-depth discussion into the perspective of AI and SC-based AIC method advances that enabled practical applications in attenuating vibration response of smart civil structures. Moreover, the review demonstrates the computing advantages of AIC over conventional controllers that are important in creating the next generation of smart civil structures.

Funder

Guangzhou University

Publisher

SAGE Publications

Subject

Mechanical Engineering,Geophysics,Mechanics of Materials,Acoustics and Ultrasonics,Building and Construction,Civil and Structural Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3