Affiliation:
1. Earthquake Engineering Research Centre (EERC), University of Iceland, Reykjavik, Iceland
Abstract
This study presents analysis of a benchmark building installed with tuned mass dampers (TMDs) while subjected to wind and earthquake loads. Different TMD schemes are applied to reduce dynamic responses of the building under wind and earthquakes. The coupled equations of motion are formulated and solved using numerical methods. The uncontrolled building (NC) and the controlled building are subjected to a set of 100 earthquake ground motions and wind forces. The effectiveness of using different multiple TMD (MTMD) schemes as opposed to single TMD (STMD) is presented. Optimal TMD parameters and their location are investigated. For a tall structure like the one studied here, TMDs are found to be more effective in controlling acceleration response than displacement, when subjected to wind forces. It is observed that MTMDs with equal stiffness in each of the TMDs (usually considered for wind response control), when optimized for a given structure, are effective in controlling acceleration response under both wind and earthquake forces. However, if the device is designed with equal mass in every floor, it is less effective in controlling wind-induced floor acceleration. Therefore, when it comes to multihazard response control, distributed TMDs with equal stiffnesses should be preferred over those with equal masses.
Subject
Mechanical Engineering,Mechanics of Materials,Geotechnical Engineering and Engineering Geology,Condensed Matter Physics,Civil and Structural Engineering
Cited by
24 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献