The wavelet transfer function of a human body–seat system

Author:

Błażejewski Andrzej1,Głowiński Sebastian1,Maciejewski Igor1

Affiliation:

1. Faculty of Technology and Education, Politechnika Koszalinska, Koszalin University of Technology, Koszalin, Poland

Abstract

In the analysis of vibration systems, classical transfer functions are used. Usually, it is the ratio of Fourier or Laplace transforms. The wavelet transfer function is proposed in this work. In this paper, the wavelets transfer function is the ratio of output and input wavelet transforms. It is considered as a distinctive correlation of the output and input system signals. The wavelet transform consists of coefficients, where the first is a scale and second time shift. To get input and output signals in the human body–seat system the dedicated test stand was made. The stand consists of a seat, moved by special shaker, which is used as a mechanical vibration device. The control program included in the source file is taken to imitate angular position of the engine. Motor shaft is connected with exciter’s moving parts and stand base, which influences directly on the seat position. The disturbance signal usually simulates a horizontal road influence on a driver. It can be considered as a low-frequency signal. It is measured by accelerometers called inertial sensors, which are placed on the platform of the shaker. The output signal is measured by an accelerometer placed on a seat and on the human head. Both signals are recorded by the Inertia Studio software wireless in the real time. After the measurement, the signals are transformed into wavelet coefficients by using Matlab package functions. The transfer function and its visualization are presented in two dimensions scale-time. The scale is related to frequency (pseudo-frequency). By the transfer function it is possible to analyze the systems, evaluate safety, compare the systems, and many more.

Publisher

SAGE Publications

Subject

Mechanical Engineering,Geophysics,Mechanics of Materials,Acoustics and Ultrasonics,Building and Construction,Civil and Structural Engineering

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3