Non-model based structural damage assessment using improved analytical redundancy relations

Author:

Fang Sheng-En12,Zhang Bao1

Affiliation:

1. School of Civil Engineering, Fuzhou University, Fuzhou, China

2. National and Local United Research Center for Seismic and Disaster Informatization of Civil Engineering, Fuzhou University, Fuzhou, China

Abstract

A damage assessment problem can be stated as a constraint satisfaction problem utilizing the translational and rotational displacements of a structure as measurements. By this means, usual numerical models are no longer required for a damage assessment, which considerably simplifies the solution process. In order to avoid the use of rotational displacements that are difficult to measure in practice, an improved analytical redundancy reduction method has been developed in which rotational displacements are replaced by translational ones. Moreover, some constraint equation positions in the decomposition of a static equilibrium matrix are exchanged according to their association with pre-assumed damaged elements. Then damage is located according to the changes in the relevant constraints of specific elements or substructures. Besides, the deviation increments of improved analytical redundancy reduction can embody the stiffness changes of the damaged elements. The proposed improved analytical redundancy reduction method was validated using both numerical and experimental steel box beams under static loads. The damage assessment results demonstrate the superiority of the improved analytical redundancy reduction method over the constraint satisfaction problem and analytical redundancy reduction methods.

Funder

National Natural Science Foundation of China

Qishan Scholar Program of Fuzhou University

Publisher

SAGE Publications

Subject

Mechanical Engineering,Geophysics,Mechanics of Materials,Acoustics and Ultrasonics,Building and Construction,Civil and Structural Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3