Muffler structure improvement based on acoustic finite element analysis

Author:

Fu Jun12ORCID,Xu Minghui1,Zhang Zengfeng1,Kang Wenjie1,He Yong1

Affiliation:

1. College of Mechanical and Energy Engineering, Shaoyang University, Shaoyang, China

2. Key Laboratory of Hunan Province for Efficient Power System and Intelligent Manufacturing, Shaoyang University, Shaoyang, China

Abstract

Aiming to obtain the acoustic attenuation performance of exhaust muffler of diesel engine and the influence of main structural parameters on its acoustic attenuation characteristics, the finite element analysis method and acoustic theory were adopted to numerically investigate the acoustic attenuation performance under the boundary condition of acoustic adiabatic propagation and muffler wall. It suggested that the noise cancellation effect of muffler was poor at the middle and low frequency in range of 0–3000 Hz, and the transfer loss of muffler was basically 0 dB pass frequency at 1100 Hz. According to previous single-factor study experience, the structural factors, such as the expansion ratio, insertion length of outlet perforated pipe, the distance between the diaphragm and the front part of muffler, have influences on the acoustic performance of muffler at low frequency. Thus, they were taken as the starting point to study the influence of multiple interaction factors on the muffling performance by using orthogonal design method combined with the finite element analysis method. The influence degree of different structure parameters on the acoustic performance of muffler and the optimized structure parameters were obtained. Through the analysis on the acoustic characteristic of the optimized muffler, it indicated that the transmission loss of the improved muffler had significant increase in other frequency range except the range of 650–800 Hz and 2500–2700 Hz, especially at frequency of 1100 Hz compared with the original muffler. In the range of 0–3000 Hz, the mean of transmission loss of the improved muffler was about 9.8 dB larger than that of original muffler, which indicated that better noise cancellation effect was achieved. The improved muffler also provided a certain reference for the structural improvement of similar muffler.

Funder

the National Natural Science Foundation Key Project of China

Hunan Provincial Graduate Research Innovation Project

Scientific Research Fund of Hunan Provincial Education Department

Scientific Research Fund of Hunan Science and Technology Department Project

Shaoyang College Graduate Research and Innovation Project

Publisher

SAGE Publications

Subject

Mechanical Engineering,Geophysics,Mechanics of Materials,Acoustics and Ultrasonics,Building and Construction,Civil and Structural Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3