Measurement and Simulation of the Propagation of Impulsive Acoustic Emission Sources in Pipes

Author:

Abolle-Okoyeagu Chika Judith1ORCID,Fatukasi Samuel1,Reuben Bob2

Affiliation:

1. School of Engineering, Robert Gordon University, Garthdee Road, Aberdeen AB10 7GJ, UK

2. School of Engineering and Physical Sciences, Heriot-Watt University, Edinburgh EH14 4AS, UK

Abstract

Acoustic Emission (AE) testing is a non-destructive evaluation technique that has gained significant attention in pipeline monitoring. Pencil-lead breaks (PLBs) are commonly used in reproducing and characterising sensors used in AE applications and have emerged as a valuable tool for calibration processes. This technique involves breaking a pencil lead by pressing it on the surface of the test structure and applying a bending moment at a given angle on a surface. The applied force produces a local deformation on the test surface, which is released when the lead breaks. The fracture in these PLBs is assumed to be a step unload; however, this is not the case. In this work, a series of PLB source experiments complemented with parallel numerical simulations were carried out to investigate the actual unload rate by correlating the relationship between AE speed, frequency, and power from PLBs. This was achieved by varying the simulation unload rates recorded over a duration of 2 s on a steel pipe and comparing to the experiment. Analysis of the investigated results from the experimental and numerical models suggests that although the AE line structure of a PLB can be reproduced by simulation for short times only (1 µs), the actual unload rate for PLBs is in the region of 10–8 s. It is concluded that FEA has the potential to help in the recovery of the temporal structure from real AE structures. The establishment of this model will provide a theoretical basis for future studies on the monitoring of non-impulsive AE sources such as impact on pipelines using finite element analysis.

Funder

Petroleum Technology Development Fund

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3