Maintenance strategy selection for multi-component systems using a combined analytic network process and cost-risk criticality model

Author:

Shafiee Mahmood1,Labib Ashraf2,Maiti Jhareswar3,Starr Andrew1

Affiliation:

1. Cranfield University, Cranfield, UK

2. University of Portsmouth, Portsmouth, UK

3. Indian Institute of Technology Kharagpur, Kharagpur, India

Abstract

Selection of an appropriate maintenance strategy for multi-component systems is a very complex task due to diversity of components and their different failure modes, existence of various dependencies among components and a large number of competing criteria that need to be taken into consideration. This study presents a combined analytic network process and cost-risk criticality analysis model to select a cost-effective, low-risk maintenance strategy for different sets of components of a complex system. The proposed model consists of four maintenance alternatives (i.e. failure-based, time-based, risk-based and condition-based), among which the most appropriate strategy, on the basis of two criteria of maintenance implementation costs and failure criticality, is to be chosen. The former criterion includes the annual maintenance expenditure required for hardware, software and personnel training, while the latter criterion focuses on the capability of maintenance in reducing the failure vulnerability and enhancing the reliability and resilience. The possible dependencies among selection criteria as well as the failure interactions between components are taken into account to evaluate the maintenance alternatives. Finally, the model is applied to determine a suitable maintenance strategy for a new wind turbine configuration consisting of several mechanical, electrical and auxiliary components at the design stage. The results are compared with practices of maintenance over the first year of system operation as well as with the results obtained from an analytic hierarchy process model.

Publisher

SAGE Publications

Subject

Safety, Risk, Reliability and Quality

Cited by 23 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3