Novel algorithms for sequential fault diagnosis based on greedy method

Author:

Tian Heng12ORCID,Duan Fuhai2,Sang Yong2ORCID,Fan Liang3

Affiliation:

1. School of Mechatronics Engineering, Henan University of Science and Technology, Luoyang, China

2. School of Mechanical Engineering, Dalian University of Technology, Dalian, China

3. Aviation Key Laboratory of Science and Technology on Inertia, AVIC Xi’an Flight Automatic Control Research Institute, Xi’an, China

Abstract

Test sequencing for binary systems is a nondeterministic polynomial-complete problem, where greedy algorithms have been proposed to find the solution. The traditional greedy algorithms only extract a single kind of information from the D-matrix to search the optimal test sequence, so their application scope is limited. In this study, two novel greedy algorithms that combine the weight index for fault detection with the information entropy are introduced for this problem, which are defined as the Mix1 algorithm and the Mix2 algorithm. First, the application scope for the traditional greedy algorithms is demonstrated in detail by stochastic simulation experiments. Second, two new heuristic formulas are presented, and their scale factors are determined. Third, an example is used to show how the two new algorithms work, and four real-world D-matrices are employed to validate their universality and stability. Finally, the application scope of the Mix1 and Mix2 algorithms is determined based on stochastic simulation experiments, and the two greedy algorithms are also used to improve a multistep look-ahead heuristic algorithm. The Mix1 and Mix2 algorithms can obtain good results in a reasonable time and have a wide application scope, which also can be used to improve the multistep look-ahead heuristic algorithm.

Publisher

SAGE Publications

Subject

Safety, Risk, Reliability and Quality

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Fault Diagnosis Strategy Based on Information Entropy and Heuristic Particle Swarm Optimization Algorithm;2023 IEEE International Conference on Mechatronics and Automation (ICMA);2023-08-06

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3