A locally adaptive ensemble approach for data-driven prognostics of heterogeneous fleets

Author:

Al-Dahidi Sameer1,Di Maio Francesco1,Baraldi Piero1,Zio Enrico12

Affiliation:

1. Department of Energy, Politecnico di Milano, Milan, Italy

2. Chair System Science and the Energy Challenge, Fondation Electricité de France (EDF), CentraleSupélec, Université Paris Saclay, Chatenay-Malabry, France

Abstract

In this work, we consider the problem of predicting the remaining useful life of a piece of equipment, based on data collected from a heterogeneous fleet working under different operating conditions. When the equipment experiences variable operating conditions, individual data-driven prognostic models are not able to accurately predict the remaining useful life during the entire equipment life. The objective of this work is to develop an ensemble approach of different prognostic models for aggregating their remaining useful life predictions in an adaptive way, for good performance throughout the degradation progression. Two data-driven prognostic models are considered, a homogeneous discrete-time finite-state semi-Markov model and a fuzzy similarity–based model. The ensemble approach is based on a locally weighted strategy that aggregates the outcomes of the two prognostic models of the ensemble by assigning to each model a weight and a bias related to its local performance, that is, the accuracy in predicting the remaining useful life of patterns of a validation set similar to the one under study. The proposed approach is applied to a case study regarding a heterogeneous fleet of aluminum electrolytic capacitors used in electric vehicle powertrains. The results have shown that the proposed ensemble approach is able to provide more accurate remaining useful life predictions throughout the entire life of the equipment compared to an alternative ensemble approach and to each individual homogeneous discrete-time finite-state semi-Markov model and fuzzy similarity–based models.

Funder

China NSFC

Publisher

SAGE Publications

Subject

Safety, Risk, Reliability and Quality

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3