A similarity-based remaining useful life prediction method using multimodal degradation features and adjusted cosine similarity

Author:

Kong Chengcheng,Yu WennianORCID,Zeng Qiang,Chen Zixu,Peng YizhenORCID

Abstract

Abstract When a large amount of full life-cycle data are available, similarity-based methods are the preferred method for remaining useful life (RUL) prediction due to their reliability and accuracy. Traditional similarity-based RUL prediction methods use a single model and single-scale degradation features, which are incapable of fully capturing the degradation behavior of the system. Additionally, the similarity of spatial orientation is neglected in the similarity-matching process. To fill these research gaps, a novel method is developed based on multimodal degradation features and adjusted cosine similarity (ACS) to tackle complex-system RUL prediction in this paper. Complete ensemble empirical mode decomposition with adaptive noise is employed to decouple global degradation and random fluctuations in run-to-failure sensor data. Slow feature analysis is utilized to obtain local degradation features, and residual terms are used as global degradation features. Then, multimodal degradation features are transformed into one-dimensional health degradation indicators by bidirectional gated recurrent unit autoencoder. An ACS is developed to estimate the matching similarity between the test degradation curve and the training degradation curve. The proposed scheme captures the time-varying multimodal degradation behavior and provides libraries of health curves with multiple degradation patterns. The designed scheme is evaluated on the C-MAPSS dataset and the results illustrate the competitiveness and effectiveness of the proposed method.

Funder

National Natural Science Foundation of China

Publisher

IOP Publishing

Subject

Applied Mathematics,Instrumentation,Engineering (miscellaneous)

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3