A study on the small failure probabilities of cylindrical composite hydrogen storage tanks using subset simulation

Author:

Sid Amer Youcef1,Benammar Samir1,Tee Kong Fah23ORCID,Iourzikene Zouhir4

Affiliation:

1. Laboratoire Energétique-Mécanique & Ingenieries (LEMI), Faculty of Technology (FT), University M’Hamed BOUGARA of Boumerdes (UMBB), Boumerdes, Algeria

2. Department of Civil and Environmental Engineering, King Fahd University of Petroleum and Minerals, Dhahran, Saudi Arabia

3. Interdisciplinary Research Center for Construction and Building Materials, KFUPM, Dhahran, Saudi Arabia

4. Laboratoire Mécanique des Solides et Systèmes (LMSS), Faculté de Technologie (FT), Université M’Hamed BOUGARA de Boumerdes (UMBB), Boumerdes, Algeria

Abstract

Although composite hydrogen tanks are becoming increasingly intriguing, a detailed structural reliability analysis is still lacking. The current landscape of analysis for pressurised multilayer cylinders, while rich in research, lacks tools to deal with the low probabilities of failure that govern the design of hydrogen tanks. This study presents a computational framework integrating the Subset Simulation method (SS) for assessing the failure probability of composite tanks used for hydrogen storage. To explore how randomness impacts design parameters, this study utilises a limit state equation derived from the thin-walled circumferential model of composite pressure tanks. Five random variables, each with varying coefficients of variation (COVs), are incorporated into the analysis. For comparison and validation purposes, two methods Monte Carlo simulations and FORM have been used. The analysis revealed that SS excels at estimating the low failure probabilities of composite hydrogen tanks, and showed also the feasibility and accuracy of SS in the prediction of burst pressure since good agreement was obtained between the probabilistic approach and the experimental results. Furthermore, the uncertainties related to internal pressure and composite thickness affect significantly the reliability of the structure and can lead to the shrinkage of the safety margin and the failure of the vessel.

Publisher

SAGE Publications

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3