Fault diagnosis method of peak-load-regulation steam turbine based on improved PCA-HKNN artificial neural network

Author:

Wu Yifan1ORCID,Li Wei1,Sheng Deren1,Chen Jianhong1,Yu Zitao1

Affiliation:

1. Institute of Thermal Science and Power System, Zhejiang University, Hangzhou, China

Abstract

Clean energy is now developing rapidly, especially in the United States, China, the Britain and the European Union. To ensure the stability of power production and consumption, and to give higher priority to clean energy, it is essential for large power plants to implement peak shaving operation, which means that even the 1000 MW steam turbines in large plants will undertake peak shaving tasks for a long period of time. However, with the peak load regulation, the steam turbines operating in low capacity may be much more likely to cause faults. In this paper, aiming at peak load shaving, a fault diagnosis method of steam turbine vibration has been presented. The major models, namely hierarchy-KNN model on the basis of improved principal component analysis (Improved PCA-HKNN) has been discussed in detail. Additionally, a new fault diagnosis method has been proposed. By applying the PCA improved by information entropy, the vibration and thermal original data are decomposed and classified into a finite number of characteristic parameters and factor matrices. For the peak shaving power plants, the peak load shaving state involving their methods of operation and results of vibration would be elaborated further. Combined with the data and the operation state, the HKNN model is established to carry out the fault diagnosis. Finally, the efficiency and reliability of the improved PCA-HKNN model is discussed. It’s indicated that compared with the traditional method, especially handling the large data, this model enhances the convergence speed and the anti-interference ability of the neural network, reduces the training time and diagnosis time by more than 50%, improving the reliability of the diagnosis from 76% to 97%.

Publisher

SAGE Publications

Subject

Safety, Risk, Reliability and Quality

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3