A new remote intelligent diagnosis system for marine diesel engines based on an improved multi-kernel algorithm

Author:

Yuan Yupeng123,Yan Xinping123,Wang Kai123,Yuan Chengqing123

Affiliation:

1. Reliability Engineering Institute, School of Energy and Power Engineering, Wuhan University of Technology, Wuhan, China

2. National Engineering Research Center for Water Transport Safety, Wuhan University of Technology, Wuhan, China

3. Key Laboratory of Marine Power Engineering and Technology, Ministry of Transport, Wuhan University of Technology, Wuhan, China

Abstract

Due to heavy work load of marine diesel engines, the failure in their mechanical components may result in serious accidents. Existing condition monitoring methods for marine diesel engines usually adopt warning after the failure occurred. In order to predict potential faults, this work has put forward a remote intelligent monitoring system for marine diesel engines. The global system for mobile communication mode was employed to construct the basis of data remote transmission, and a new multi-kernel extreme learning machine algorithm was proposed to diagnose the early faults in an intelligent method. Experimental tests were carried out in the marine diesel engine fault diagnosis set-up. The analysis results show that the proposed remote intelligent monitoring system can accurately, timely and reliably detect the potential failures. Meanwhile, the proposed multi-kernel extreme learning machine was compared with the existing methods. The comparison indicates that the multi-kernel extreme learning machine outperforms its rivals in term of fault detection rate by an increase of 3.4%. Therefore, the proposed remote intelligent monitoring system has good prospects for engineering applications.

Publisher

SAGE Publications

Subject

Safety, Risk, Reliability and Quality

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3