Affiliation:
1. Department of Philosophy, Lawrence, KS, USA
Abstract
We address some of the epistemological challenges highlighted by the Critical Data Studies literature by reference to some of the key debates in the philosophy of science concerning computational modeling and simulation. We provide a brief overview of these debates focusing particularly on what Paul Humphreys calls epistemic opacity. We argue that debates in Critical Data Studies and philosophy of science have neglected the problem of error management and error detection. This is an especially important feature of the epistemology of Big Data. In “Error” section we explain the main characteristics of error detection and correction along with the relationship between error and path complexity in software. In this section we provide an overview of conventional statistical methods for error detection and review their limitations when faced with the high degree of conditionality inherent to modern software systems.
Subject
Library and Information Sciences,Information Systems and Management,Computer Science Applications,Communication,Information Systems
Cited by
42 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献