Scientific Software Citation Intent Classification Using Large Language Models

Author:

Istrate Ana-MariaORCID,Fisher JoshuaORCID,Yang XinyuORCID,Moraw KaraORCID,Li KaiORCID,Li DonghuiORCID,Klein MartinORCID

Abstract

AbstractSoftware has emerged as a crucial tool in the current research ecosystem, frequently referenced in academic papers for its application in studies or the introduction of new software systems. Despite its prevalence, there remains a significant gap in understanding how software is cited within the scientific literature. In this study, we offer a conceptual framework for studying software citation intent and explore the use of large language models, such as BERT-based models, GPT-3.5, and GPT-4 for this task. We compile a representative software-mention dataset by merging two existing gold standard software mentions datasets and annotating them to a common citation intent scheme. This new dataset makes it possible to analyze software citation intent at the sentence level. We observe that in a fine-tuning setting, large language models can generally achieve an accuracy of over 80% on software citation intent classification on unseen, challenging data. Our research paves the way for future empirical investigations into the realm of research software, establishing a foundational framework for exploring this under-examined area.

Publisher

Springer Nature Switzerland

Reference44 articles.

1. Ammar, W., et al.: Construction of the literature graph in semantic scholar. arXiv preprint arXiv:1805.02262 (2018)

2. Barker, M., et al.: Introducing the fair principles for research software. Sci. Data 9(1), 622 (2022)

3. Beltagy, I., Lo, K., Cohan, A.: SciBERT: a pretrained language model for scientific text. In: Inui, K., Jiang, J., Ng, V., Wan, X. (eds.) Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 3615–3620. Association for Computational Linguistics, Hong Kong, China (2019). https://doi.org/10.18653/v1/D19-1371. https://aclanthology.org/D19-1371

4. Bensman, S.J.: Garfield and the impact factor: the creation, utilization, and validation of a citation measure. Ann. Rev. Inf. Sci. Technol. (ARIST) 42 (2008)

5. Bird, S., et al.: The ACL anthology reference corpus: a reference dataset for bibliographic research in computational linguistics. In: LREC (2008)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3