Treatment selection in multi-arm multi-stage designs: With application to a postpartum haemorrhage trial

Author:

Choodari-Oskooei Babak1ORCID,Thwin Soe Soe2,Blenkinsop Alexandra13ORCID,Widmer Mariana2,Althabe Fernando2,Parmar Mahesh KB1

Affiliation:

1. MRC Clinical Trials Unit at UCL, Institute of Clinical Trials and Methodology, University College London (UCL), London, UK

2. Maternal and Perinatal Health Unit, Department of Sexual and Reproductive Health and Research (SRH), World Health Organization (WHO), Geneve, Switzerland

3. Amsterdam Institute for Global Health and Development, Amsterdam, Netherlands

Abstract

Background: Multi-arm multi-stage trials are an efficient, adaptive approach for testing many treatments simultaneously within one protocol. In settings where numbers of patients available to be entered into trials and resources might be limited, such as primary postpartum haemorrhage, it may be necessary to select a pre-specified subset of arms at interim stages even if they are all showing some promise against the control arm. This will put a limit on the maximum number of patients required and reduce the associated costs. Motivated by the World Health Organization Refractory HaEmorrhage Devices trial in postpartum haemorrhage, we explored the properties of such a selection design in a randomised phase III setting and compared it with other alternatives. The objectives are: (1) to investigate how the timing of treatment selection affects the operating characteristics; (2) to explore the use of an information-rich (continuous) intermediate outcome to select the best-performing arm, out of four treatment arms, compared with using the primary (binary) outcome for selection at the interim stage; and (3) to identify factors that can affect the efficiency of the design. Methods: We conducted simulations based on the refractory haemorrhage devices multi-arm multi-stage selection trial to investigate the impact of the timing of treatment selection and applying an adaptive allocation ratio on the probability of correct selection, overall power and familywise type I error rate. Simulations were also conducted to explore how other design parameters will affect both the maximum sample size and trial timelines. Results: The results indicate that the overall power of the trial is bounded by the probability of ‘correct’ selection at the selection stage. The results showed that good operating characteristics are achieved if the treatment selection is conducted at around 17% of information time. Our results also showed that although randomising more patients to research arms before selection will increase the probability of selecting correctly, this will not increase the overall efficiency of the (selection) design compared with the fixed allocation ratio of 1:1 to all arms throughout. Conclusions: Multi-arm multi-stage selection designs are efficient and flexible with desirable operating characteristics. We give guidance on many aspects of these designs including selecting the intermediate outcome measure, the timing of treatment selection, and choosing the operating characteristics.

Funder

Medical Research Council

World Health Organization

Publisher

SAGE Publications

Subject

Pharmacology,General Medicine

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Facilities for optimizing and designing multiarm multistage (MAMS) randomized controlled trials with binary outcomes;The Stata Journal: Promoting communications on statistics and Stata;2023-09

2. Multi-arm Multi-stage (MAMS) Platform Randomized Clinical Trials;Principles and Practice of Clinical Trials;2022

3. Multi-arm Multi-stage (MAMS) Platform Randomized Clinical Trials;Principles and Practice of Clinical Trials;2021

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3