Multi-arm multi-stage (MAMS) randomised selection designs: impact of treatment selection rules on the operating characteristics

Author:

Choodari-Oskooei BabakORCID,Blenkinsop AlexandraORCID,Handley KellyORCID,Pinkney ThomasORCID,Parmar Mahesh K. B.

Abstract

Abstract Background Multi-arm multi-stage (MAMS) randomised trial designs have been proposed to evaluate multiple research questions in the confirmatory setting. In designs with several interventions, such as the 8-arm 3-stage ROSSINI-2 trial for preventing surgical wound infection, there are likely to be strict limits on the number of individuals that can be recruited or the funds available to support the protocol. These limitations may mean that not all research treatments can continue to accrue the required sample size for the definitive analysis of the primary outcome measure at the final stage. In these cases, an additional treatment selection rule can be applied at the early stages of the trial to restrict the maximum number of research arms that can progress to the subsequent stage(s). This article provides guidelines on how to implement treatment selection within the MAMS framework. It explores the impact of treatment selection rules, interim lack-of-benefit stopping boundaries and the timing of treatment selection on the operating characteristics of the MAMS selection design. Methods We outline the steps to design a MAMS selection trial. Extensive simulation studies are used to explore the maximum/expected sample sizes, familywise type I error rate (FWER), and overall power of the design under both binding and non-binding interim stopping boundaries for lack-of-benefit. Results Pre-specification of a treatment selection rule reduces the maximum sample size by approximately 25% in our simulations. The familywise type I error rate of a MAMS selection design is smaller than that of the standard MAMS design with similar design specifications without the additional treatment selection rule. In designs with strict selection rules - for example, when only one research arm is selected from 7 arms - the final stage significance levels can be relaxed for the primary analyses to ensure that the overall type I error for the trial is not underspent. When conducting treatment selection from several treatment arms, it is important to select a large enough subset of research arms (that is, more than one research arm) at early stages to maintain the overall power at the pre-specified level. Conclusions Multi-arm multi-stage selection designs gain efficiency over the standard MAMS design by reducing the overall sample size. Diligent pre-specification of the treatment selection rule, final stage significance level and interim stopping boundaries for lack-of-benefit are key to controlling the operating characteristics of a MAMS selection design. We provide guidance on these design features to ensure control of the operating characteristics.

Funder

Medical Research Council

National Institute for Health and Care Research

Publisher

Springer Science and Business Media LLC

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3