Sample size adjustment designs with time-to-event outcomes: A caution

Author:

Freidlin Boris1,Korn Edward L1

Affiliation:

1. Biometric Research Program, Division of Cancer Treatment and Diagnosis, National Cancer Institute, Bethesda, MD, USA

Abstract

Background: Sample size adjustment designs, which allow increasing the study sample size based on interim analysis of outcome data from a randomized clinical trial, have been increasingly promoted in the biostatistical literature. Although it is recognized that group sequential designs can be at least as efficient as sample size adjustment designs, many authors argue that a key advantage of these designs is their flexibility; interim sample size adjustment decisions can incorporate information and business interests external to the trial. Recently, Chen et al. (Clinical Trials 2015) considered sample size adjustment applications in the time-to-event setting using a design (CDL) that limits adjustments to situations where the interim results are promising. The authors demonstrated that while CDL provides little gain in unconditional power (versus fixed-sample-size designs), there is a considerable increase in conditional power for trials in which the sample size is adjusted. Methods: In time-to-event settings, sample size adjustment allows an increase in the number of events required for the final analysis. This can be achieved by either (a) following the original study population until the additional events are observed thus focusing on the tail of the survival curves or (b) enrolling a potentially large number of additional patients thus focusing on the early differences in survival curves. We use the CDL approach to investigate performance of sample size adjustment designs in time-to-event trials. Results: Through simulations, we demonstrate that when the magnitude of the true treatment effect changes over time, interim information on the shape of the survival curves can be used to enrich the final analysis with events from the time period with the strongest treatment effect. In particular, interested parties have the ability to make the end-of-trial treatment effect larger (on average) based on decisions using interim outcome data. Furthermore, in “clinical null” cases where there is no benefit due to crossing survival curves, the sample size adjustment design is shown to increase the probability of recommending an ineffective therapy. Conclusion: Access to interim information on the shape of the survival curves may jeopardize the perceived integrity of trials using sample size adjustment designs. Therefore, given the lack of efficiency advantage over group sequential designs, sample size adjustment designs in time-to-event settings remain unjustified.

Publisher

SAGE Publications

Subject

Pharmacology,General Medicine

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3