Accrual Prediction Program: A web-based clinical trials tool for monitoring and predicting accrual for early-phase cancer studies

Author:

Liu Junhao1ORCID,Wick Jo A1,Mudaranthakam Dinesh Pal1,Jiang Yu2,Mayo Matthew S1,Gajewski Byron J13

Affiliation:

1. Department of Biostatistics & Data Science, University of Kansas Medical Center, Kansas City, KS, USA

2. Division of Epidemiology, Biostatistics, and Environmental Health, School of Public Health, The University of Memphis, Memphis, TN, USA

3. University of Kansas Cancer Center, Kansas City, KS, USA

Abstract

Background Monitoring subject recruitment is key to the success of a clinical trial. Accordingly, researchers have developed accrual-monitoring tools to support the design and conduct of trials. At an institutional level, delays in identifying studies with high risk of accrual failure can lead to inefficient and costly trials with little chances of meeting study objectives. Comprehensive accrual monitoring is necessary to the success of the research enterprise. Methods This article describes the design and implementation of the University of Kansas Cancer Center Accrual Prediction Program, a web-based platform was developed to support comprehensive accrual monitoring and prediction for all active clinical trials. The Accrual Prediction Program provides information on accrual, including the predicted completion date, predicted number of accrued subjects during the pre-specified accrual period, and the probability of achieving accrual targets. It relies on a Bayesian accrual prediction model to combine protocol information with real-time trial enrollment data and disseminates results via web application. Results First released in 2016, the Accrual Prediction Program summarizes enrollment information for active studies categorized by various trial attributes. The web application supports real-time evidence-based decision making for strategic resource allocation and study management of over 120 ongoing clinical trials at the University of Kansas Cancer Center. Conclusion The Accrual Prediction Program makes accessing comprehensive accrual information manageable at an institutional level. Cancer centers or even entire institutions can reproduce the Accrual Prediction Program to achieve real-time comprehensive monitoring and prediction of subject accrual to aid investigators and administrators in the design, conduct, and management of clinical trials.

Funder

National Cancer Institute

Publisher

SAGE Publications

Subject

Pharmacology,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3