Simultaneously optimizing dose and schedule of a new cytotoxic agent

Author:

Braun Thomas M.1,Thall Peter F.2,Nguyen Hoang2,de Lima Marcos3

Affiliation:

1. Department of Biostatistics, School of Public Health, University of Michigan, Ann Arbor, MI, USA,

2. Department of Biostatistics and Applied Mathematics, The University of Texas, M.D. Anderson Cancer Center, Houston, TX, USA

3. Department of Blood and Marrow Transplantation, The University of Texas, M.D. Anderson Cancer Center, Houston, TX, USA

Abstract

Background Traditionally, phase I clinical trial designs are based upon one predefined course of treatment while varying among patients the dose given at each administration. In actual medical practice, patients receive a schedule comprised of several courses of treatment, and some patients may receive one or more dose reductions or delays during treatment. Consequently, the overall risk of toxicity for each patient is a function of both actual schedule of treatment and the differing doses used at each adminstration. Purpose Our goal is to provide a practical phase I clinical trial design that more accurately reflects actual medical practice by accounting for both dose per administration and schedule. Methods We propose an outcome-adaptive Bayesian design that simultaneously optimizes both dose and schedule in terms of the overall risk of toxicity, based on time-to-toxicity outcomes. We use computer simulation as a tool to calibrate design parameters. Results We describe a phase I trial in allogeneic bone marrow transplantation that was designed and is currently being conducted using our new method. Our computer simulations demonstrate that our method outperforms any method that searches for an optimal dose but does not allow schedule to vary, both in terms of the probability of identifying optimal (dose, schedule) combinations, and the numbers of patients assigned to those combinations in the trial. Limitations Our design requires greater sample sizes than those seen in traditional phase I studies due to the larger number of treatment combinations examined. Our design also assumes that the effects of multiple administrations are independent of each other and that the hazard of toxicity is the same for all administrations. Conclusions Our design is the first for phase I clinical trials that is sufficiently flexible and practical to truly reflect clinical practice by varying both dose and the timing and number of administrations given to each patient. Clinical Trials 2007; 4: 113—124. http://ctj.sagepub.com

Publisher

SAGE Publications

Subject

Pharmacology,General Medicine

Cited by 57 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3