A Bayesian pharmacokinetics integrated phase I–II design to optimize dose-schedule regimes

Author:

Lu Mengyi1,Yuan Ying2ORCID,Liu Suyu2

Affiliation:

1. Department of Biostatistics, Nanjing Medical University , Nanjing 211166, China

2. Department of Biostatistics, The University of Texas MD Anderson Cancer Center , Houston, TX 77030, United States

Abstract

Abstract The schedule of administering a drug has profound impact on the toxicity and efficacy profiles of the drug through changing its pharmacokinetics (PK). PK is an innate and indispensable component of the dose-schedule optimization. Motivated by this, we propose a Bayesian PK integrated dose-schedule finding (PKIDS) design to identify the optimal dose-schedule regime by integrating PK, toxicity, and efficacy data. Based on the causal pathway that dose and schedule affect PK, which in turn affects efficacy and toxicity, we jointly model the three endpoints by first specifying a Bayesian hierarchical model for the marginal distribution of the longitudinal dose-concentration process. Conditional on the drug concentration in plasma, we jointly model toxicity and efficacy as a function of the concentration. We quantify the risk-benefit of regimes using utility—continuously updating the estimates of PK, toxicity, and efficacy based on interim data—and make adaptive decisions to assign new patients to appropriate dose-schedule regimes via adaptive randomization. The simulation study shows that the PKIDS design has desirable operating characteristics.

Funder

National Cancer Institute

Publisher

Oxford University Press (OUP)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3