Bayesian models for subgroup analysis in clinical trials

Author:

Jones Hayley E1,Ohlssen David I2,Neuenschwander Beat3,Racine Amy3,Branson Michael3

Affiliation:

1. School of Social and Community Medicine, University of Bristol, UK

2. Novartis Pharmaceuticals, East Hanover, NJ, USA

3. Novartis Pharma AG, Basel, Switzerland

Abstract

Background In a pharmaceutical drug development setting, possible interactions between the treatment and particular baseline clinical or demographic factors are often of interest. However, the subgroup analysis required to investigate such associations remains controversial. Concerns with classical hypothesis testing approaches to the problem include low power, multiple testing, and the possibility of data dredging. Purpose As an alternative to hypothesis testing, the use of shrinkage estimation techniques is investigated in the context of an exploratory post hoc subgroup analysis. A range of models that have been suggested in the literature are reviewed. Building on this, we explore a general modeling strategy, considering various options for shrinkage of effect estimates. This is applied to a case-study, in which evidence was available from seven-phase II–III clinical trials examining a novel therapy, and also to two artificial datasets with the same structure. Methods Emphasis is placed on hierarchical modeling techniques, adopted within a Bayesian framework using freely available software. A range of possible subgroup model structures are applied, each incorporating shrinkage estimation techniques. Results The investigation of the case-study showed little evidence of subgroup effects. Because inferences appeared to be consistent across a range of well-supported models, and model diagnostic checks showed no obvious problems, it seemed this conclusion was robust. It is reassuring that the structured shrinkage techniques appeared to work well in a situation where deeper inspection of the data suggested little evidence of subgroup effects. Limitations The post hoc examination of subgroups should be seen as an exploratory analysis, used to help make better informed decisions regarding potential future studies examining specific subgroups. To a certain extent, the degree of understanding provided by such assessments will be limited by the quality and quantity of available data. Conclusions In light of recent interest by health authorities into the use of subgroup analysis in the context of drug development, it appears that Bayesian approaches involving shrinkage techniques could play an important role in this area. Hopefully, the developments outlined here provide useful methodology for tackling such a problem, in-turn leading to better informed decisions regarding subgroups.

Publisher

SAGE Publications

Subject

Pharmacology,General Medicine

Cited by 87 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3