Bayesian Hierarchical Models for Subgroup Analysis

Author:

Wang Yun1,Tu Wenda1,Koh William1,Travis James1,Abugov Robert1ORCID,Hamilton Kiya1,Zheng Mengjie1,Crackel Roberto1,Bonangelino Pablo1,Rothmann Mark1ORCID

Affiliation:

1. Department of Health and Human Services, Office of Biostatistics Center for Drug Evaluation and Research, FDA Silver Spring Maryland USA

Abstract

ABSTRACTIn conventional subgroup analyses, subgroup treatment effects are estimated using data from each subgroup separately without considering data from other subgroups in the same study. The subgroup treatment effects estimated this way may be heterogenous with high variability due to small sample sizes in some subgroups and much different from the treatment effect in the overall population. A Bayesian hierarchical model (BHM) can be used to derive more precise, and less heterogenous estimates of subgroup treatment effects that are closer to the treatment effect in the overall population. BHM assumes exchangeability in treatment effect across subgroups after adjusting for effect modifiers and other relevant covariates. In this article, we will discuss the technical details for applying one‐way and multi‐way BHM using summary‐level statistics, and patient‐level data for subgroup analysis. Four case studies based on four new drug applications are used to illustrate the application of these models in subgroup analyses for continuous, dichotomous, time‐to‐event, and count endpoints.

Publisher

Wiley

Reference37 articles.

1. “FDASIA Section 907: Inclusion of Demographic Subgroups in Clinical Trials ” accessed August 2 2023 https://www.fda.gov/regulatory‐information/food‐and‐drug‐administration‐safety‐and‐innovation‐act‐fdasia/fdasia‐section‐907‐inclusion‐demographic‐subgroups‐clinical‐trials.

2. “FDA Action Plan to Enhance the Collection and Availability of Demographic Subgroup Data ” accessed August 2 2023 https://www.fda.gov/media/89307/download.

3. “FDA Published Drug Trials Snapshots ” accessed August 2 2023 https://www.fda.gov/drugs/drug‐approvals‐and‐databases/drug‐trials‐snapshots.

4. The Importance of “Shrinkage” in Subgroup Analyses

5. Bayesian models for subgroup analysis in clinical trials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3