Beneficial Effects of Two Marine Oxygen Carriers, M101 and M201, on Human Islet Quality in Hypoxic Culture Conditions

Author:

Lemaire Florent12,Sigrist Séverine1ORCID,Brassard Jonathan2ORCID,Demini Leila3,Zal Franck3,Jeandidier Nathalie4,Pinget Michel15,Maillard Elisa1ORCID

Affiliation:

1. Defymed, Strasbourg, France

2. Department of Chemical Engineering, McGill University, Montreal, Quebec, Canada

3. HEMARINA Aéropôle Centre, Biotechnopôle, Morlaix, France

4. Department of Endocrinology, Diabetes and Metabolic Diseases, Hôpitaux Universitaires de Strasbourg, Université de Strasbourg, Strasbourg, France

5. Centre Européen d’Etude du Diabète, Université de Strasbourg, Strasbourg, France

Abstract

High pancreatic islet sensitivity to hypoxia is an important issue in the field of pancreatic islet transplantation. A promising strategy to improve islet oxygenation in hypoxic conditions is to leverage the properties of hemoglobin as a natural carrier of oxygen. Studies using human or bovine hemoglobin have failed to demonstrate efficacy, probably due to the molecule being unstable in the absence of protective erythrocytes. Recently, marine worm hemoglobins have been shown to be more stable and to possess higher oxygen carrier potential, with 156 oxygen binding sites per molecule compared to four in humans. Previous studies have shown the beneficial effects of two marine worm hemoglobins, M101 and M201, on nonhuman pancreatic islets. However, their effects on human islets have not been tested or compared. In this study, we assessed the impact of both molecules during human islet culture in vitro under hypoxic conditions. Human islets were exposed to both molecules for 24 h in high islet density-induced hypoxia [600 islet equivalents (IEQ)/cm²]. M101 and M201 reduced the release of hypoxic (VEGF) and apoptotic (cyt c) markers in the medium after 24-h culture. Human islet function or viability was improved in vitro in the presence of these oxygen carriers. Thus, the utilization of M101 or M201 could be a safe and easy way to improve human islet oxygenation and survival in hypoxic conditions as observed during islet culture prior to transplantation or islet encapsulation.

Funder

Société Francophone de transplantation

Centre Européen d'Etude du Diabète

Publisher

SAGE Publications

Subject

Transplantation,Cell Biology,Biomedical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3