Considerations and challenges of islet transplantation and future therapies on the horizon

Author:

Walker Sophie1,Appari Mahesh1,Forbes Shareen123ORCID

Affiliation:

1. BHF Centre for Cardiovascular Sciences, Queen’s Medical Research Institute, University of Edinburgh, Edinburgh, United Kingdom

2. Transplant Unit, Royal Infirmary of Edinburgh, Edinburgh, United Kingdom

3. Islet Transplant Program, University of Alberta, Edmonton, Alberta, Canada

Abstract

Islet transplantation is a treatment for selected adults with type 1 diabetes and severe hypoglycemia. Islets from two or more donor pancreases, a scarce resource, are usually required to impact glycemic control, but the treatment falls short of a cure. Islets are avascular when transplanted into the hypoxic liver environment and subjected to inflammatory insults, immune attack, and toxicity from systemic immunosuppression. The Collaborative Islet Transplant Registry, with outcome data on over 1,000 islet transplant recipients, has demonstrated that larger islet numbers transplanted and older age of recipients are associated with better outcomes. Induction with T-cell depleting agents and the TNF-α inhibitor etanercept and maintenance systemic immunosuppression with mTOR inhibitors in combination with calcineurin inhibitors also appear advantageous, but concerns remain over immunosuppressive toxicity. We discuss strategies and therapeutics that address specific challenges of islet transplantation, many of which are at the preclinical stage of development. On the horizon are adjuvant cell therapies with mesenchymal stromal cells and regulatory T cells that have been used in preclinical models and in humans in other contexts; such a strategy may enable reductions in immunosuppression in the early peri-transplant period when the islets are vulnerable to apoptosis. Human embryonic stem cell-derived islets are in early-phase clinical trials and hold the promise of an inexhaustible supply of insulin-producing cells; effective encapsulation of such cells or, silencing of the human leukocyte antigen (HLA) complex would eliminate the need for immunosuppression, enabling this therapy to be used in all those with type 1 diabetes.

Funder

British Heart Foundation

Medical Research Council

Publisher

American Physiological Society

Subject

Physiology (medical),Physiology,Endocrinology, Diabetes and Metabolism

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3