Protective Effects of Human Milk-Derived Exosomes on Intestinal Stem Cells Damaged by Oxidative Stress

Author:

Dong Ping1ORCID,Zhang Ying1,Yan Dong-yong1,Wang Yi1,Xu Xiu1,Zhao Ying-chun2,Xiao Tian-tian2

Affiliation:

1. Department of Child Healthcare, Children’s Hospital of Fudan University, Shanghai, China

2. Department of Neonatology, Children’s Hospital of Shanghai, China

Abstract

Breastfeeding has been shown to have a protective effect on the occurrence of necrotizing enterocolitis (NEC), but the mechanism remains unclear. In the context of NEC pathogenesis, many of the protective properties of exosomes on the intestinal epithelial compartment make it an ideal therapeutic target. In the present study, our hypothesis was that intestinal stem cells (ISCs) would be protected from injury by human milk-derived exosomes (HMDEs). Human breast milk was collected, and exosomes were isolated using ExoQuick reagent. Magnetic-activated cell sorting isolation of prominin-1+ ISCs was performed from small intestines of neonatal rat. ISCs were treated with or without H2O2, and HMDEs, an equal volume of HMDE-free milk, or a control solution [phosphate-buffered solution (PBS)] was added, respectively. In the absence of HMDEs, exposure of ISCs to H2O2 led to decreased cell viability. However, addition of HMDEs to ISCs exposed to H2O2 led to significantly increased ISC viability. There was a significant upregulation of mRNA expression of Axin2, c-Myc, and Cyclin D1 genes of the Wnt/β-catenin axis in ISCs treated with HMDEs (6.99 ± 2.34, 4.21 ± 1.68, 6.17 ± 2.22, respectively, P < 0.05 for all), as compared to control. In the presence of carnosic acid (a specific Wnt/β-catenin signaling inhibitor), the cell viability was significantly decreased. Thus, HMDEs protect ISCs from oxidative stress injury in vitro, which were possibly mediated via the Wnt/β-catenin signaling pathway. Our findings indicate that oral administration of HMDEs might be a promising measure in treating NEC or in preventing the development of NEC in high-risk infants when breast milk is not available.

Funder

Young Clinical Scientist Program of Fudan Academy of Pediatrics

Publisher

SAGE Publications

Subject

Transplantation,Cell Biology,Biomedical Engineering

Cited by 38 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3