Oxidative damage induced by combined exposure of titanium dioxide nanoparticles and cypermethrin in rats for 90 days

Author:

Zhong Mingqing1ORCID,Zhang Ruoyu1,He Xianzhi1,Fu Yu1,Cao Yuqing1,Li Yuanyuan2,Zhai Qingfeng1ORCID

Affiliation:

1. School of Public Health, Weifang Medical University, Weifang, China

2. Department of Neonatology, Weifang Maternal and Child Health Hospital, Weifang, China

Abstract

Titanium dioxide nanoparticles (TiO2NPs) and cypermethrin (CPM) are widely used in various fields, and they can enter the environment in different ways. Combined exposure of TiO2NPs and CPM may increase the accumulation of pollutants in organisms and affect human health. This study was undertaken to evaluate the oxidative and inflammatory parameters associated with the combined exposure of TiO2NPs and CPM in rats. Twenty-four healthy male adult SD rats were randomly divided into four groups. The first group served as the control, while groups 2, 3, and 4 were treated with TiO2NPs (450 mg/m3); CPM (6.67 mg/m3) or combined exposure of TiO2NPs and CPM by inhalation for 90 days. We investigated the oxidative damage induced through combined exposure of TiO2NPs and CPM in rats by evaluating hematology of the rats and determining the blood biochemical index. Our results demonstrated that inhalation of TiO2NPs and CPM increased the levels of oxidative stress markers such as malondialdehyde and alkaline phosphatase in the serum of rats. These were accompanied by a decreased glutathione peroxidase and total superoxide dismutase levels. Furthermore, the level of glutathione peroxidase was further decreased while malondialdehyde was increased in the combined exposure of TiO2NPs and CPM. Interestingly, pathological sections showed that different degrees of tissue injury could be seen in the liver and lung tissues of each exposure group. In summary, the combined exposure of TiO2NPs and CPM can cause increased oxidative damage in rats and damage the tissue structure of the liver and lung.

Funder

the Shandong Medical and Health Technology Development Plan Project

National Food Safety Risk Assessment Center 2022 Joint Scientific Research Program

Publisher

SAGE Publications

Subject

Health, Toxicology and Mutagenesis,Public Health, Environmental and Occupational Health,Toxicology

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3