Affiliation:
1. School of Public Health, Weifang Medical University, Weifang, China
2. Department of Neonatology, Weifang Maternal and Child Health Hospital, Weifang, China
Abstract
Titanium dioxide nanoparticles (TiO2NPs) and cypermethrin (CPM) are widely used in various fields, and they can enter the environment in different ways. Combined exposure of TiO2NPs and CPM may increase the accumulation of pollutants in organisms and affect human health. This study was undertaken to evaluate the oxidative and inflammatory parameters associated with the combined exposure of TiO2NPs and CPM in rats. Twenty-four healthy male adult SD rats were randomly divided into four groups. The first group served as the control, while groups 2, 3, and 4 were treated with TiO2NPs (450 mg/m3); CPM (6.67 mg/m3) or combined exposure of TiO2NPs and CPM by inhalation for 90 days. We investigated the oxidative damage induced through combined exposure of TiO2NPs and CPM in rats by evaluating hematology of the rats and determining the blood biochemical index. Our results demonstrated that inhalation of TiO2NPs and CPM increased the levels of oxidative stress markers such as malondialdehyde and alkaline phosphatase in the serum of rats. These were accompanied by a decreased glutathione peroxidase and total superoxide dismutase levels. Furthermore, the level of glutathione peroxidase was further decreased while malondialdehyde was increased in the combined exposure of TiO2NPs and CPM. Interestingly, pathological sections showed that different degrees of tissue injury could be seen in the liver and lung tissues of each exposure group. In summary, the combined exposure of TiO2NPs and CPM can cause increased oxidative damage in rats and damage the tissue structure of the liver and lung.
Funder
the Shandong Medical and Health Technology Development Plan Project
National Food Safety Risk Assessment Center 2022 Joint Scientific Research Program
Subject
Health, Toxicology and Mutagenesis,Public Health, Environmental and Occupational Health,Toxicology
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献