Benefit of nanocarrier of magnetic magnesium in rat malathion-induced toxicity and cardiac failure using non-invasive monitoring of electrocardiogram and blood pressure

Author:

Mohammadi Hamidreza1,Karimi Gholamreza2,Mahdi Rezayat Seyed3,Reza Ahmad4,Shafiee Hoda5,Nikfar Shekoufeh6,Baeeri Maryam6,Sabzevari Omid6,Abdollahi Mohammad7

Affiliation:

1. Faculty of Pharmacy, Pharmaceutical Sciences Research Center, Tehran University of Medical Sciences, Tehran, Iran, Medical Toxicology Research Center, Faculty of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran

2. Medical Toxicology Research Center, Faculty of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran

3. Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran, Faculty of Advanced Sciences and Technology in Medicine, Tehran University of Medical Sciences, Tehran, Iran, Pharmaceutical Science Branch, Islamic Azad University, Tehran, Iran

4. Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran

5. Pharmaceutical Science Branch, Islamic Azad University, Tehran, Iran

6. Faculty of Pharmacy, Pharmaceutical Sciences Research Center, Tehran University of Medical Sciences, Tehran, Iran

7. Faculty of Pharmacy, Pharmaceutical Sciences Research Center, Tehran University of Medical Sciences, Tehran, Iran, Pharmaceutical Science Branch, Islamic Azad University, Tehran, Iran,

Abstract

Medical management in acute organophosphate (OP) poisoning is not always successful because of tissue hypoxia which results in a reduction of heart contractility and cell damage. This study reports improvement of malathion (MAL)-induced cardiac failure by a nanocarrier of magnetic isotope of Mg (PMC16). A rat model of acute MAL poisoning was set up. PMC16 nanoparticle at doses of 0.05, 0.1, 0.2 LD50 = 896 mg/kg) were administered intravenously (iv) 30 minutes after a single intraperitoneal (ip) injection of MAL (0.25 LD50= 207 mg/kg). Atropine (AT; 40 mg/kg, ip) plus pralidoxime (PAM; 40 mg/kg, ip) and magnesium sulfate (MgSO4; 600 mg/kg, iv) were used as standard therapy or controls. Anesthetized animals were monitored for heart rate, electrocardiogram, blood pressure, and blood oxidative stress biomarkers like cellular lipid peroxidation, total thiol molecules, antioxidant power, gamma glutamil transpeptidase, and acetylcholinesterase (AChE) as a marker of OP toxicity. Results indicated that after MAL administration, heart rate and BP decreased and R-R duration increased. PMC16 markedly restored BP at all doses as compared with MgSO4. PMC16 at the dose of 0.05 LD50 significantly increased BP in comparison to AT + PAM. PMC16 restored heart rate at dose of 0.2 LD50 and reduced lipid peroxidation at dose of 0.05 LD50 as compared to MgSO4. PMC16 also improved total antioxidant power at all doses when compared to AT + PAM and reduced GGT activity at dose of 0.2 LD50 but did not affect total thiol molecules. MgSO4could improve MAL-induced reduction of total antioxidant power. After 24 h, PMC16 significantly improved MAL-suppressed AChE activity at doses of 0.05 and 0.1 LD50. PMC16 at all doses significantly recovered MAL-induced arrhythmia when compared to standard therapies. It is concluded that PMC16 is able to control OP-induced cardiac failure and toxicity.

Publisher

SAGE Publications

Subject

Health, Toxicology and Mutagenesis,Public Health, Environmental and Occupational Health,Toxicology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3