Affiliation:
1. Gansu Provincial Center for Disease Control and Prevention, West Lanzhou, Gansu, People’s Republic of China
2. Shandong food and Drug Administration, SDFDA, Jinan, People’s Republic of China
3. School of Public Health, Nanjing Medical University, Jiangning District, Nanjing, People’s Republic of China
4. School of Public Health, Shandong University, Jinan, People’s Republic of China
Abstract
This study aimed to analyze the neurological changes induced by acrylamide (ACR) poisoning and their underlying mechanisms within the spinal cords of male adult Wistar rats. The rats were randomly divided into three groups ( n = 9 rats per group). ACR was intraperitoneally injected to produce axonopathy according to the daily dosing schedules of 20 or 40 mg/kg/day of ACR for eight continuous weeks (three times per week). During the exposure period, body weights and gait scores were assessed, and the concentration of Ca2+ was calculated in 27 mice. Protein kinase A (PKA), protein kinase C (PKC), cyclin-dependent protein kinase 5 (CDK5), and P35 were assessed by electrophoretic resolution and Western blotting. The contents of 3′-cyclic adenosine monophosphate (cAMP) and calmodulin (CaM) were determined using ELISA kits, and the activities of calcium/calmodulin-dependent protein kinase II (CaMKII), PKA, and PKC were determined using the commercial Signa TECTPKAassay kits. Compared with control rats, treatment with 20 and 40 mg/kg of ACR decreased body weight and increased gait scores at 8 weeks. Intracellular Ca2+ levels increased significantly in treated rats; CaM, PKC, CDK5, and P35 levels were significantly decreased; and PKA and cAMP levels remained unchanged. CaMKII, PKA, and PKC activities increased significantly. The results indicated that ACR can damage neurofilaments by affecting the contents and activities of CaM, CaMKII, PKA, cAMP, PKC, CDK5, and P35, which could result in ACR toxic neuropathy.
Funder
national natural science foundation of china
Subject
Health, Toxicology and Mutagenesis,Public Health, Environmental and Occupational Health,Toxicology
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献