Histone demethylase JHDM2A participates in the repair of arsenic-induced DNA damage in L-02 cells by regulating DDB2

Author:

Li Changzhe1ORCID,Zhang Anliu2,Hu Ting1,Yang Yue1,Tang Shunfang1,Li Jun1

Affiliation:

1. The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education Department of Toxicology, School of Public Health, Guizhou Medical University, Guiyang, China

2. Guiyang Center for Disease Control and Prevention, Guiyang, China

Abstract

Arsenic is widely present in nature and is a class I carcinogen confirmed by the World Health Organization and the International Agency for Research on Cancer. The liver is responsible for biotransformation in the body and is one of the major organs where arsenic accumulates in the body, but the mechanisms of arsenic-induced abnormal DNA damage repair pathways in the liver are still unclear. Recent studies have revealed that epigenetic mechanisms play an important role in arsenic-induced lesions. In this study, an in vitro model was established using human normal hepatocytes L-02 to investigate the mechanism of the specific demethylase JHDM2A of H3K9me2 in the repair of arsenic-induced DNA damage in L-02 cells. The results showed that with the increase of arsenic concentrations, the extent of DNA damage in L-02 cells showed an increasing trend and total intracellular H3K9me2 expression was downregulated. In addition, the enrichment level of H3K9me2 in the promoter region of DBB2, a key factor of nucleotide repair (NBR), increased, while protein and mRNA expression levels showed a decreasing trend. Thereafter, we overexpressed and repressed JHDM2A and found a close association between JHDM2A and arsenic-induced DNA damage. DDB2 protein and mRNA expression was downregulated with JHDM2A overexpression and upregulated with JHDM2A repression, while DBB2 promoter region H3K9me2 enrichment levels remained at a high level, although they were affected after JHDM2A overexpression or knockdown to some extent. These results suggest a potential mechanism by which JHDM2A may regulate DDB2 gene expression, participate in the NBR process, and play a role in arsenic-induced DNA damage in L-02 cells, which is not the result of JHDM2A exerting demethylation on H3K9me2 in the DDB2 promoter region. Our results provided an epigenetic mechanism for endemic arsenicosis, as well as a scientific basis for potential prevention and control measures.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Guizhou Province

Publisher

SAGE Publications

Subject

Health, Toxicology and Mutagenesis,Public Health, Environmental and Occupational Health,Toxicology

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3