Circ0087385 promotes DNA damage in benzo(a)pyrene-induced lung cancer development by upregulating CYP1A1

Author:

Zhang Nan12,Qiu Miaoyun12,Yao Shuwei2,Zhou Hanyu2,Zhang Han2,Jia Yangyang2,Li Xin2,Chen Xintong2,Li Xun2,Zhou Yun12,Jiang Yiguo12ORCID

Affiliation:

1. The Key Laboratory of Advanced Interdisciplinary Studies, The First Affiliated Hospital of Guangzhou Medical University , Guangzhou 511436, China

2. Institute for Chemical Carcinogenesis, Guangzhou Medical University , Guangzhou 511436, China

Abstract

Abstract Increasing environmental genotoxic chemicals have been shown to induce epigenetic alterations. However, the interaction between genetics and epigenetics in chemical carcinogenesis is still not fully understood. Here, we constructed an in vitro human lung carcinogenesis model (16HBE-T) by treating human bronchial epithelial cells with a typical significant carcinogen benzo(a)pyrene (BaP). We identified a novel circular RNA, circ0087385, which was overexpressed in 16HBE-T and human lung cancer cell lines, as well as in lung cancer tissues and serum exosomes from lung cancer patients. The upregulated circ0087385 after exposure to BaP promoted DNA damage in the early stage of chemical carcinogenesis and affected the cell cycle, proliferation, and apoptosis of the malignantly transformed cells. Overexpression of circ0087385 enhanced the expression of cytochrome P450 1A1 (CYP1A1), which is crucial for metabolically activating BaP. Interfering with circ0087385 or CYP1A1 reduced the levels of ultimate carcinogen benzo(a)pyrene diol epoxide (BPDE) and BPDE-DNA adducts. Interfering with CYP1A1 partially reversed the DNA damage induced by high expression of circ0087385, as well as decreased the level of BPDE and BPDE-DNA adducts. These findings provide novel insights into the interaction between epigenetics and genetics in chemical carcinogenesis which are crucial for understanding the epigenetic and genetic toxicity of chemicals.

Funder

National Natural Science Foundation of China

Publisher

Oxford University Press (OUP)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3