The application of acute oral toxicity computational models in dangerous goods classification

Author:

Moudgal Chandrika1ORCID,Anger Lennart T1,Muster Wolfgang2,Nguyen Ruthi3,Melnikov Fjodor1,Siramshetty Vishal B1,Graham Jessica1ORCID

Affiliation:

1. Safety Assessment, Genentech Inc, South San Francisco, CA, USA

2. pRED, Pharmaceutical Sciences, Basel, Switzerland

3. EHS, Genentech Inc, South San Francisco, CA, USA

Abstract

Acute oral toxicity (AOT) data inform the acute toxicity potential of a compound and guides occupational safety and transportation practices. AOT data enable the categorization of a chemical into the appropriate AOT Globally Harmonized System (GHS) category based on the severity of the hazard. AOT data are also utilized to identify compounds that are Dangerous Goods (DGs) and subsequent transportation guidance for shipping of these hazardous materials. Proper identification of DGs is challenging for novel compounds that lack data. It is not feasible to err on the side of caution for all compounds lacking AOT data and to designate them as DGs, as shipping a compound as a DG has cost, resource, and time implications. With the wealth of available historical AOT data, AOT testing approaches are evolving, and in silico AOT models are emerging as tools that can be utilized with confidence to assess the acute toxicity potential of de novo molecules. Such approaches align with the 3R principles, offering a reduction or even replacement of traditional in vivo testing methods and can also be leveraged for product stewardship purposes. Utilizing proprietary historical in vivo AOT data for 210 pharmaceutical compounds (PCs), we evaluated the performance of two established in silico AOT programs: the Leadscope AOT Model Suite and the Collaborative Acute Toxicity Modeling Suite. These models accurately identified 94% and 97% compounds that were not DGs (GHS categories 4, 5, and not classified (NC)) suggesting that the models are fit-for-purpose in identifying PCs with low acute oral toxicity potential (LD50 >300 mg/kg). Utilization of these models to identify compounds that are not DGs can enable them to be de-prioritized for in vivo testing. This manuscript provides a detailed evaluation and assessment of the two models and recommends the most suitable applications of such models.

Publisher

SAGE Publications

Subject

Health, Toxicology and Mutagenesis,Public Health, Environmental and Occupational Health,Toxicology

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3