Exposure to glyphosate and tetrachlorvinphos induces cytotoxicity and global DNA methylation in human cells

Author:

Ergun Hacer1,Cayir Akin2ORCID

Affiliation:

1. Health Institute, Canakkale Onsekiz Mart University, Canakkale, Turkey

2. Vocational Health College, Canakkale Onsekiz Mart University, Canakkale, Turkey

Abstract

Two organophosphate pesticides—glyphosate and tetrachlorvinphos—have been announced as carcinogens to humans by various authorities, including the European Chemical Agency and the Environmental Protection Agency. We aimed to investigate molecular mechanisms associated with carcinogenicity and to examine changes in global m5C DNA methylation and cytotoxic potential in A549 lung epithelial cells in response to glyphosate and tetrachlorvinphos, and differential gene expression of m5C DNA methyltransferase genes in Sprague Dawley rats to Roundup (commercial formulation of glyphosate). Global m5C level significantly increased after 1500 μM glyphosate exposure for 24 h. We determined that exposure to tetrachlorvinphos did not significantly increase the m5C level in A549 cells for 24 h. Additionally, we did not observe significant DNA methylation alteration for both pesticides after 12 h exposure. In the animal study, we observed that DNA methyltransferase genes (DNMT3b and DNMT3a) showed significantly higher expression in Roundup-exposed rats than the control group in the liver and kidney. We also observed that a significant cytotoxic effect was determined after the treatment of the cells with higher concentrations of glyphosate and tetrachlorvinphos. Our results revealed that DNA methylation could be modified by exposure to glyphosate and that exposure to Roundup was associated with the differential expression level of m5C DNA methylation methyltransferase. Finally, exposure to both pesticides increased cytotoxicity.

Funder

Çanakkale Onsekiz Mart University the Scientific Research Coordination Unit

Publisher

SAGE Publications

Subject

Health, Toxicology and Mutagenesis,Public Health, Environmental and Occupational Health,Toxicology

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3