Glyphosate and a glyphosate-based herbicide dysregulate the epigenetic landscape of Homeobox A10 (Hoxa10) gene during the endometrial receptivity in Wistar rats

Author:

Lorenz Virginia,Doná Florencia,Cadaviz Dalma B.,Milesi María M.,Varayoud Jorgelina

Abstract

We observed that gestational plus lactational exposure to glyphosate (Gly), as active ingredient, or a glyphosate-based herbicide (GBH) lead to preimplantation losses in F1 female Wistar rats. Here, we investigated whether GBH and/or Gly exposure could impair Hoxa10 gene transcription by inducing epigenetic changes during the receptive stage in rats, as a possible herbicide mechanism implicated in implantation failures. F0 dams were treated with Gly or a GBH through a food dose of 2 mg Gly/kg bw/day from gestational day (GD) 9 up to lactational day 21. F1 female rats were bred, and uterine tissues were analyzed on GD5 (preimplantation period). Transcripts levels of Hoxa10, DNA methyltransferases (Dnmt1, Dnmt3a and Dnmt3b), histone deacetylases (Hdac-1 and Hdac-3) and histone methyltransferase (EZH2) were assessed by quantitative polymerase chain reaction (qPCR). Four CpG islands containing sites targeted by BstUI methylation-sensitive restriction enzyme and predicted transcription factors (TFs) were identified in Hoxa10 gene. qPCR-based methods were used to evaluate DNA methylation and histone post-translational modifications (hPTMs) in four regulatory regions (RRs) along the gene by performing methylation-sensitive restriction enzymes and chromatin immunoprecipitation assays, respectively. GBH and Gly downregulated Hoxa10 mRNA. GBH and Gly increased DNA methylation levels and Gly also induced higher levels than GBH in all the RRs analyzed. Both GBH and Gly enriched histone H3 and H4 acetylation in most of the RRs. While GBH caused higher H3 acetylation, Gly caused higher H4 acetylation in all RRs. Finally, GBH and Gly enhanced histone H3 lysine 27 trimethylation (H3K27me3) marker at 3 out of 4 RRs studied which was correlated with increased EZH2 levels. In conclusion, exposure to GBH and Gly during both gestational plus lactational phases induces epigenetic modifications in regulatory regions of uterine Hoxa10 gene. We show for the first time that Gly and a GBH cause comparable gene expression and epigenetic changes. Our results might contribute to delineate the mechanisms involved in the implantation failures previously reported. Finally, we propose that epigenetic information might be a valuable tool for risk assessment in the near future, although more research is needed to establish a cause-effect relationship.

Publisher

Frontiers Media SA

Reference64 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3