Differential Effect of Non-Purified and Semi-Purified Standard Diets on Kynurenine and Peripheral Metabolites in Male C57BL/6J Mice

Author:

Yajima Yuhei1,Okuno Alato2,Nakamura Isamu3,Miyazaki Teruo4,Honda Akira4,Toyoda Atsushi15ORCID

Affiliation:

1. Department of Food and Life Sciences, College of Agriculture, Ibaraki University, Ami-machi, Ibaraki, Japan

2. Department of Health and Nutrition, Faculty of Human Design, Shibata Gakuen University, Hirosaki-city, Aomori, Japan

3. Department of Occupational Therapy, Ibaraki Prefectural University of Health Sciences, Ami-machi, Ibaraki, Japan

4. Joint Research Center, Tokyo Medical University Ibaraki Medical Center, Ami-machi, Ibaraki, Japan

5. United Graduate School of Agricultural Science, Tokyo University of Agriculture and Technology, Fuchu-city, Tokyo, Japan

Abstract

The kynurenine (Kyn) pathway plays crucial roles in several inflammation-induced disorders such as depression. In this study, we measured Kyn and other related molecules in the blood plasma, brain, and urine of male C57BL/6J mice (B6) fed non-purified (MF) and semi-purified (AIN-93G and AIN-93M) standard rodent diets. Mice fed MF had increased plasma Kyn levels compared with those on AIN93-based diets, as well as decreased hippocampal Kyn levels compared with those fed AIN-93G. Previous studies showed that branched chain amino acids (BCAAs) suppress peripheral blood Kyn transportation to the brain, but plasma BCAA levels were not significantly different between the diet groups in our study. Urine metabolome analysis revealed that feed ingredients affected the excretion of many metabolites, and MF-fed mice had elevated excretion of kynurenic and quinolinic acids, pivotal metabolites in the Kyn pathway. Collectively, the level of critical metabolites in the Kyn pathway in the central and peripheral tissues was strongly affected by feed ingredients. Therefore, feed selection is a critical factor to ensure the reproducibility of experimental data in studies involving rodent models.

Publisher

SAGE Publications

Subject

Molecular Biology,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3