A low-power digital processing circuit for capacitive accelerometer

Author:

Zhu Zhongyi1,Liu Yidong1,Jin Zhonghe1

Affiliation:

1. Micro-Satellite Research Center, Zhejiang University, Hangzhou, China

Abstract

A low power consumption digital processing circuit with large dynamic range and low noise density for micromachined capacitive accelerometer is proposed. To reduce the power consumption, the sampling rate and the number of logic units used are analyzed. We lower the sampling rate to 2.5 MHz that is only 1/16 of previous scheme. At this frequency, the dynamic range is still as high as 120 dB that has been tested, while the dynamic power is as low as 5.4 mW that is only about 1/16 of previous scheme. To reduce the amount of logic units, we adopt square-wave demodulator instead of sinusoidal demodulator (realized by coordinate rotation digital computer algorithm). The entire digital processing circuit with square-wave demodulator uses 577 slice registers, about 1/10 of the circuit with sinusoidal demodulator. The dynamic power is even reduced to 0.54 mW. Most of all, almost no additional noise is added into this circuit, and the output noise density is as low as 0.01 mg/√Hz.

Publisher

SAGE Publications

Subject

Electrical and Electronic Engineering,Condensed Matter Physics,General Materials Science

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3