Effects of ambient pressure on the critical velocity and back-layering length in longitudinal ventilated tunnel fire

Author:

Yan Guanfeng12,Wang Mingnian12,Yu Li12ORCID,Tian Yuan12

Affiliation:

1. Key Laboratory of Transportation Tunnel Engineering, Ministry of Education, Southwest Jiaotong University, Chengdu, P.R. China

2. School of Civil Engineering, Southwest Jiaotong University, Chengdu, P.R. China

Abstract

Nowadays, the critical velocity and back-layering length are the key parameters in longitudinal ventilation design. However, most studies research them at standard air pressure but ambient pressure decreases at high-altitude area and the reduced ambient pressure could affect the smoke movement characteristics in a tunnel fire. In order to investigate the effect of ambient pressure on the velocity and back-layering length in longitudinal ventilated tunnel, theoretical analysis was carried out first and a series of numerical simulation were conducted with varying heat release rate and ambient pressure. Results show that Li’s model is also reliable under various ambient pressures. The critical velocity under various ambient pressures would become larger with an increase in the heat release rate and would remain stable after the heat release rate reaches a certain value. At smaller heat release rate, the length of counterflow would be higher under reduced ambient pressure while it remains the same when the HRR is large. This could provide reference for tunnel ventilation design at high-altitude areas.

Funder

Funds of China Railway Corporation Science and Technology Development Program

Sichuan Province Science and Technology Support Program

Publisher

SAGE Publications

Subject

Public Health, Environmental and Occupational Health

Cited by 21 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3