Investigation on the natural smoke exhaust performance by vertical shaft in tunnel fires under different ambient pressures

Author:

Gao Zihe1ORCID,Cai Jiajun1,Jiang Lin2,Mensah Rhoda Afriyie3,Fan Chuangang4

Affiliation:

1. School of Civil Engineering, Zhengzhou University, Zhengzhou, Henan, China

2. Department of Mechanical Engineering, Nanjing University of Science and Technology, Nanjing, China

3. Department of Civil, Environmental, and Natural Resources Engineering, Lulea University of Technology, Lulea, Sweden

4. School of Civil Engineering, Central South University, Changsha, Hunan, China

Abstract

In high-altitude tunnels, due to the ambient pressure and density of air being different from those under normal pressure, the convection and heat radiation in tunnels are also different when fires occur. As a result, the smoke exhaust capacity varies under different pressures. This work aimed to numerically explore the impact of ambient pressure on the smoke exhaust efficiency at high-altitude shallow tunnels with natural ventilation by shaft. The numerical results demonstrated that the smoke exhaust capacity is enhanced with increasing ambient pressure. This is because of the increase in the air entrainment coefficient and air density, and it causes plug-holing more easily to occur under higher ambient pressures. Once the plug-holing has taken place, the fresh air can be directly exhausted through the shaft, which results in a poor smoke exhaust capacity. By accounting for the factors of the smoke layer thickness, ambient pressure, the exhausted smoke temperature and heat release rate, the Richardson number was introduced as the criterion for determining whether plug-holing occurs. As ambient pressure was increased, the critical Richardson number for plug-holing was observed to decrease, a finding supported by existing research.

Funder

National Natural Science Foundation of China

Publisher

SAGE Publications

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3