Comparison of common machine learning algorithms trained with multi-zone models for identifying the location and strength of indoor pollutant sources

Author:

Huang Yu1ORCID,Gao Zhi1ORCID,Zhang Hongguang1

Affiliation:

1. School of Architecture and Urban Planning, Nanjing University, Nanjing, China

Abstract

The accurate identification of the characteristics of pollutant sources can effectively prevent the loss of human life and property damage caused by the sudden release of harmful chemicals in emergency situations. Machine learning algorithms, artificial neural network (ANN), support vector machine (SVM), k-nearest neighbour (KNN) and naive Bayesian (NB) classification can be used to identify the location of pollutant sources with limited sensor data inputs. In this study, the identification accuracy of the four above-mentioned machine learning algorithms was investigated and compared, considering the different sensor layouts, eigenvector inputs, meteorological parameters and number of samples. The results show that the collection of pollutant concentrations over an extended period of time could improve identification accuracy. Additional sensors were required to reach the same identification accuracy after the introduction of distributed meteorological parameters. Increasing the number of trained samples by a factor of five improved the identification accuracy of KNN by 22% and that of SVM by 1.7%; however, ANN and NB classification remained basically unchanged. When identifying the release mass of the pollutant source, multiple linear, ANN and SVM regression models were adopted. Results show that ANN performs best, whereas SVM provides the least optimal performance.

Funder

National Key R&D Program of China

Publisher

SAGE Publications

Subject

Public Health, Environmental and Occupational Health

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3