Prompt location of indoor instantaneous air contaminant source through multi-zone model-based probability method by utilizing airflow data from coarse-grid CFD model

Author:

Chen Qianru1,Wang Haidong1ORCID,Dai Yuwei1,Hu Yibing2

Affiliation:

1. School of Environment and Architecture, University of Shanghai for Science and Technology, University of Shanghai for Science and Technology, Shanghai, China

2. School of Architecture and Urban Planning, Nanjing University, Nanjing, China

Abstract

In order to ensure indoor air quality safety, locating the airborne contaminant sources accurately and quickly is extremely important so that timely measures can be taken to undermine the spread of pollutant and even eliminate the negative effects. Previous studies have shown that the multi-zone model can greatly reduce the inverse calculation time. However, the multi-zone model cannot describe the details of the indoor velocity field, which limits its application in complex multi-zone or large space buildings. On the premise of the accuracy and computational speed, based on the joint probability method, this study adopted the coarse-grid CFD method to speed up the process of acquiring the indoor airflow field, together with the multi-zone model method, to perform the inverse calculation of indoor airborne contaminant source location. In the backward calculation process, we conducted the ‘transpose' of the velocity field to obtain adjoint matrix, instead of computing ‘negative' of the velocity vector to save the calculation time. A two-dimensional ventilation model was utilized to validate the method, which proved the accuracy and time-saving potential of it. This study provides theoretical and practical prospect for the real-time inverse calculation of locating the indoor airborne contaminant sources.

Funder

National Natural Science Foundation of China

Publisher

SAGE Publications

Subject

Public Health, Environmental and Occupational Health

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3