Assessing Dimensionality of IRT Models Using Traditional and Revised Parallel Analyses

Author:

Guo Wenjing1ORCID,Choi Youn-Jeng2

Affiliation:

1. The University of Alabama, Tuscaloosa, USA

2. Ewha Womans University, Seoul, South Korea

Abstract

Determining the number of dimensions is extremely important in applying item response theory (IRT) models to data. Traditional and revised parallel analyses have been proposed within the factor analysis framework, and both have shown some promise in assessing dimensionality. However, their performance in the IRT framework has not been systematically investigated. Therefore, we evaluated the accuracy of traditional and revised parallel analyses for determining the number of underlying dimensions in the IRT framework by conducting simulation studies. Six data generation factors were manipulated: number of observations, test length, type of generation models, number of dimensions, correlations between dimensions, and item discrimination. Results indicated that (a) when the generated IRT model is unidimensional, across all simulation conditions, traditional parallel analysis using principal component analysis and tetrachoric correlation performs best; (b) when the generated IRT model is multidimensional, traditional parallel analysis using principal component analysis and tetrachoric correlation yields the highest proportion of accurately identified underlying dimensions across all factors, except when the correlation between dimensions is 0.8 or the item discrimination is low; and (c) under a few combinations of simulated factors, none of the eight methods performed well (e.g., when the generation model is three-dimensional 3PL, the item discrimination is low, and the correlation between dimensions is 0.8).

Publisher

SAGE Publications

Subject

Applied Mathematics,Applied Psychology,Developmental and Educational Psychology,Education

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3