Evaluating Close Fit in Ordinal Factor Analysis Models With Multiply Imputed Data

Author:

Shi Dexin1ORCID,Zhang Bo2ORCID,Liu Ren3ORCID,Jiang Zhehan4

Affiliation:

1. University of South Carolina, Columbia, USA

2. University of Illinois Urbana-Champaign, USA

3. University of California, Merced, USA

4. Peking University, Beijing, China

Abstract

Multiple imputation (MI) is one of the recommended techniques for handling missing data in ordinal factor analysis models. However, methods for computing MI-based fit indices under ordinal factor analysis models have yet to be developed. In this short note, we introduced the methods of using the standardized root mean squared residual (SRMR) and the root mean square error of approximation (RMSEA) to assess the fit of ordinal factor analysis models with multiply imputed data. Specifically, we described the procedure for computing the MI-based sample estimates and constructing the confidence intervals. Simulation results showed that the proposed methods could yield sufficiently accurate point and interval estimates for both SRMR and RMSEA, especially in conditions with larger sample sizes, less missing data, more response categories, and higher degrees of misfit. Based on the findings, implications and recommendations were discussed.

Publisher

SAGE Publications

Subject

Applied Mathematics,Applied Psychology,Developmental and Educational Psychology,Education

Reference48 articles.

1. Estimation of Linear Models with Incomplete Data

2. Asparouhov T., Muthén B. (2010a). Multiple imputation with Mplus: Technical implementation. http://statmodel2.com/download/Imputations7.pdf

3. Asparouhov T., Muthén B. (2010b). Weighted least squares estimation with missing data: Technical implementation. https://www.statmodel.com/download/GstrucMissingRevision.pdf

4. Item Response Theory

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3