Evaluating Imputation-Based Fit Statistics in Structural Equation Modeling With Ordinal Data: The MI2S Approach

Author:

Sriutaisuk Suppanut1ORCID,Liu Yu2,Chung Seungwon3,Kim Hanjoe4,Gu Fei1

Affiliation:

1. Faculty of Psychology, Chulalongkorn University, Bangkok, Thailand

2. University of Houston, Houston, TX, USA

3. U.S. Food and Drug Administration, Washington, DC, USA

4. Yonsei University, Seoul, Seoul Korea

Abstract

The multiple imputation two-stage (MI2S) approach holds promise for evaluating the model fit of structural equation models for ordinal variables with multiply imputed data. However, previous studies only examined the performance of MI2S-based residual-based test statistics. This study extends previous research by examining the performance of two alternative test statistics: the mean-adjusted test statistic ( T M) and the mean- and variance-adjusted test statistic ( T MV). Our results showed that the MI2S-based T MV generally outperformed other test statistics examined in a wide range of conditions. The MI2S-based root mean square error of approximation also exhibited good performance. This article demonstrates the MI2S approach with an empirical data set and provides Mplus and R code for its implementation.

Publisher

SAGE Publications

Reference55 articles.

1. Asparouhov T., Muthén B. O. (2010a). Simple second order chi-square correction. https://www.statmodel.com/download/WLSMV_new_chi21.pdf

2. Asparouhov T., Muthén B. O. (2010b). Weighted least squares estimation with missing data. https://www.statmodel.com/download/GstrucMissingRevision.pdf

3. Asparouhov T., Muthén B. O. (2022). Multiple imputation with Mplus: Technical implementation. https://www.statmodel.com/download/Imputations7.pdf

4. Robustness?

5. Asymptotically distribution-free methods for the analysis of covariance structures

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3