Enhancing the Detection of Social Desirability Bias Using Machine Learning: A Novel Application of Person-Fit Indices

Author:

Nazari Sanaz1ORCID,Leite Walter L.2ORCID,Huggins-Manley A. Corinne2

Affiliation:

1. University of California, San Diego, La Jolla, USA

2. University of Florida, Gainesville, USA

Abstract

Social desirability bias (SDB) is a common threat to the validity of conclusions from responses to a scale or survey. There is a wide range of person-fit statistics in the literature that can be employed to detect SDB. In addition, machine learning classifiers, such as logistic regression and random forest, have the potential to distinguish between biased and unbiased responses. This study proposes a new application of these classifiers to detect SDB by considering several person-fit indices as features or predictors in the machine learning methods. The results of a Monte Carlo simulation study showed that for a single feature, applying person-fit indices directly and logistic regression led to similar classification results. However, the random forest classifier improved the classification of biased and unbiased responses substantially. Classification was improved in both logistic regression and random forest by considering multiple features simultaneously. Moreover, cross-validation indicated stable area under the curves (AUCs) across machine learning classifiers. A didactical illustration of applying random forest to detect SDB is presented.

Publisher

SAGE Publications

Reference83 articles.

1. Artner R. (2016). A simulation study of person-fit in the Rasch model. Psychological Test and Assessment Modeling, 58(3), 531–563. https://lirias.kuleuven.be/retrieve/523896

2. The Properties and Utility of Less Evaluative Personality Scales: Reduction of Social Desirability; Increase of Construct and Discriminant Validity

3. Resampling Methods for Meta-Model Validation with Recommendations for Evolutionary Computation

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3