Resampling Methods for Meta-Model Validation with Recommendations for Evolutionary Computation

Author:

Bischl B.1,Mersmann O.1,Trautmann H.1,Weihs C.1

Affiliation:

1. Faculty of Statistics, TU Dortmund University, Germany

Abstract

Meta-modeling has become a crucial tool in solving expensive optimization problems. Much of the work in the past has focused on finding a good regression method to model the fitness function. Examples include classical linear regression, splines, neural networks, Kriging and support vector regression. This paper specifically draws attention to the fact that assessing model accuracy is a crucial aspect in the meta-modeling framework. Resampling strategies such as cross-validation, subsampling, bootstrapping, and nested resampling are prominent methods for model validation and are systematically discussed with respect to possible pitfalls, shortcomings, and specific features. A survey of meta-modeling techniques within evolutionary optimization is provided. In addition, practical examples illustrating some of the pitfalls associated with model selection and performance assessment are presented. Finally, recommendations are given for choosing a model validation technique for a particular setting.

Publisher

MIT Press - Journals

Subject

Computational Mathematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3