A Monte Carlo Study of Confidence Interval Methods for Generalizability Coefficient

Author:

Jiang Zhehan1,Raymond Mark2ORCID,DiStefano Christine3ORCID,Shi Dexin3ORCID,Liu Ren4ORCID,Sun Junhua5

Affiliation:

1. Peking University, Beijing, China

2. National Conference of Bar Examiners, Philadelphia, PA, USA

3. University of South Carolina, Columbia, SC, USA

4. University of California, Merced, Merced, CA, USA

5. Nanjing University, Nanjing, Jiangsu, China

Abstract

Computing confidence intervals around generalizability coefficients has long been a challenging task in generalizability theory. This is a serious practical problem because generalizability coefficients are often computed from designs where some facets have small sample sizes, and researchers have little guide regarding the trustworthiness of the coefficients. As generalizability theory can be framed to a linear mixed-effect model (LMM), bootstrap and simulation techniques from LMM paradigm can be used to construct the confidence intervals. The purpose of this research is to examine four different LMM-based methods for computing the confidence intervals that have been proposed and to determine their accuracy under six simulated conditions based on the type of test scores (normal, dichotomous, and polytomous data) and data measurement design ( p× i× r and p× [ i:r]). A bootstrap technique called “parametric methods with spherical random effects” consistently produced more accurate confidence intervals than the three other LMM-based methods. Furthermore, the selected technique was compared with model-based approach to investigate the performance at the levels of variance components via the second simulation study, where the numbers of examines, raters, and items were varied. We conclude with the recommendation generalizability coefficients, the confidence interval should accompany the point estimate.

Publisher

SAGE Publications

Subject

Applied Mathematics,Applied Psychology,Developmental and Educational Psychology,Education

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3