A General Bayesian Multidimensional Item Response Theory Model for Small and Large Samples

Author:

Fujimoto Ken A.1ORCID,Neugebauer Sabina R.2

Affiliation:

1. Loyola University Chicago, Chicago, IL, USA

2. Temple University, Philadelphia, PA, USA

Abstract

Although item response theory (IRT) models such as the bifactor, two-tier, and between-item-dimensionality IRT models have been devised to confirm complex dimensional structures in educational and psychological data, they can be challenging to use in practice. The reason is that these models are multidimensional IRT (MIRT) models and thus are highly parameterized, making them only suitable for data provided by large samples. Unfortunately, many educational and psychological studies are conducted on a small scale, leaving the researchers without the necessary MIRT models to confirm the hypothesized structures in their data. To address the lack of modeling options for these researchers, we present a general Bayesian MIRT model based on adaptive informative priors. Simulations demonstrated that our MIRT model could be used to confirm a two-tier structure (with two general and six specific dimensions), a bifactor structure (with one general and six specific dimensions), and a between-item six-dimensional structure in rating scale data representing sample sizes as small as 100. Although our goal was to provide a general MIRT model suitable for smaller samples, the simulations further revealed that our model was applicable to larger samples. We also analyzed real data from 121 individuals to illustrate that the findings of our simulations are relevant to real situations.

Publisher

SAGE Publications

Subject

Applied Mathematics,Applied Psychology,Developmental and Educational Psychology,Education

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3