Reconsidering Cutoff Points in the General Method of Empirical Q-Matrix Validation

Author:

Nájera Pablo1,Sorrel Miguel A.1,Abad Francisco José1

Affiliation:

1. Universidad Autónoma de Madrid, Madrid, Spain

Abstract

Cognitive diagnosis models (CDMs) are latent class multidimensional statistical models that help classify people accurately by using a set of discrete latent variables, commonly referred to as attributes. These models require a Q-matrix that indicates the attributes involved in each item. A potential problem is that the Q-matrix construction process, typically performed by domain experts, is subjective in nature. This might lead to the existence of Q-matrix misspecifications that can lead to inaccurate classifications. For this reason, several empirical Q-matrix validation methods have been developed in the recent years. de la Torre and Chiu proposed one of the most popular methods, based on a discrimination index. However, some questions related to the usefulness of the method with empirical data remained open due the restricted number of conditions examined, and the use of a unique cutoff point ( EPS) regardless of the data conditions. This article includes two simulation studies to test this validation method under a wider range of conditions, with the purpose of providing it with a higher generalization, and to empirically determine the most suitable EPS considering the data conditions. Results show a good overall performance of the method, the relevance of the different studied factors, and that using a single indiscriminate EPS is not acceptable. Specific guidelines for selecting an appropriate EPS are provided in the discussion.

Funder

Ministerio de Economía y Competitividad

Publisher

SAGE Publications

Subject

Applied Mathematics,Applied Psychology,Developmental and Educational Psychology,Education

Cited by 20 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. An exploratory Q-matrix estimation method based on sparse non-negative matrix factorization;Behavior Research Methods;2024-07-26

2. Determining the number of attributes in the GDINA model;British Journal of Mathematical and Statistical Psychology;2024-06-18

3. Combining regularization and logistic regression model to validate the Q‐matrix for cognitive diagnosis model;British Journal of Mathematical and Statistical Psychology;2024-04-22

4. Identifiability Conditions in Cognitive Diagnosis: Implications for Q-Matrix Estimation Algorithms;Springer Proceedings in Mathematics & Statistics;2024

5. Using machine learning to improve Q-matrix validation;Behavior Research Methods;2023-05-25

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3