Investigating distortions in perceptual stability during different self-movements using virtual reality

Author:

Warren Paul A.1ORCID,Bell Graham1,Li Yu1

Affiliation:

1. Virtual Reality Research (VR2) Facility, Division of Neuroscience and Experimental Psychology, University of Manchester, Manchester, UK

Abstract

Using immersive virtual reality (the HTC Vive Head Mounted Display), we measured both bias and sensitivity when making judgements about the scene stability of a target object during both active (self-propelled) and passive (experimenter-propelled) observer movements. This was repeated in the same group of 16 participants for three different observer-target movement conditions in which the instability of a target was yoked to the movement of the observer. We found that in all movement conditions that the target needed to move with (in the same direction) as the participant to be perceived as scene-stable. Consistent with the presence of additional available information (efference copy) about self-movement during active conditions, biases were smaller and sensitivities to instability were higher in these relative to passive conditions. However, the presence of efference copy was clearly not sufficient to completely eliminate the bias and we suggest that the presence of additional visual information about self-movement is also critical. We found some (albeit limited) evidence for correlation between appropriate metrics across different movement conditions. These results extend previous findings, providing evidence for consistency of biases across different movement types, suggestive of common processing underpinning perceptual stability judgements.

Publisher

SAGE Publications

Subject

Artificial Intelligence,Sensory Systems,Experimental and Cognitive Psychology,Ophthalmology

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Foveated Walking: Translational Ego-Movement and Foveated Rendering;ACM Symposium on Applied Perception 2023;2023-08-05

2. Perception-based high quality distributed virtual reality;Virtual Reality;2023-07-05

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3